Cambridge O Level

CHEMISTRY

5070/11
Paper 1 Multiple Choice
October/November 2020
1 hour
You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser
Soft pencil (type B or HB is recommended)

INSTRUCTIONS

- There are forty questions on this paper. Answer all questions.
- For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40 .
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 A student needs to measure $17.60 \mathrm{~cm}^{3}$ of hydrochloric acid. The student has access to the apparatus commonly found in a school laboratory.

Which piece of equipment should be used to measure the $17.60 \mathrm{~cm}^{3}$ of hydrochloric acid?
A a burette
B a gas syringe
C a measuring cylinder
D a pipette

2 When calcium carbonate is added to dilute hydrochloric acid, carbon dioxide gas is released.
Three sets of apparatus are shown.

1

2

Which sets of apparatus are suitable, together with a stop-watch, for following the rate of this reaction?
A 1, 2 and 3
B 1 and 2 only
C 2 only
D 2 and 3 only

3 Some substances may be separated using paper chromatography. The diagram shows the results of running two mixtures in a suitable solvent.

Which spot has an R_{f} value of 0.37 ?

4 Petroleum (crude oil) is separated into useful fractions by fractional distillation. The positions at which fractions X and Y are collected from the fractionating column are shown.

Which statement is correct?
A The temperature increases up the column.
B X condenses at a lower temperature than Y .
C X has a higher boiling point than Y.
D X has longer chain molecules than Y .

5 Compound X is a crystalline solid at room temperature and pressure. An aqueous solution of X is tested as shown.

test	test result
acidify with dilute nitric acid, then add aqueous barium nitrate	no visible change
add aqueous ammonia	white precipitate, soluble in excess

What could be the identity of X ?
A ammonium carbonate
B sodium sulfate
C calcium nitrate
D zinc chloride

6 When aqueous sodium hydroxide is added to a solution, a white precipitate forms which dissolves when excess sodium hydroxide is added.

Which ion could be present in the solution?
A $\mathrm{Al}^{3+}(\mathrm{aq})$
B $\mathrm{Ca}^{2+}(\mathrm{aq})$
C $\mathrm{Cu}^{2+}(\mathrm{aq})$
D $\mathrm{Na}^{+}(\mathrm{aq})$

7 Why does a balloon full of helium gas become smaller as the temperature changes from $30^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$?

A The gas condenses to a liquid and so takes up less space.
B The gas particles become smaller at lower temperatures.
C The gas particles diffuse through the balloon and escape.
D The gas particles move more slowly so reducing the pressure.

8 The diagram of an ion is shown.

What can be deduced about the number of protons in this ion?
A It has 9 protons.
B It has 10 protons.
C It has 11 protons
D You cannot deduce the number of protons from this diagram.

9 The circuit diagram shows an experiment using a rod of copper and a rod of graphite.

When the switch is closed, the bulb lights because an electric current flows through the copper and the graphite.

Which particles move through these two solids?

	copper ions	electrons	carbon ions
A	\checkmark	x	\checkmark
B	x	\checkmark	x
C	\checkmark	\checkmark	x
D	x	\checkmark	\checkmark

10 Which material has the highest melting point?
A ammonia
B methane
C sodium chloride
D water

11 Which statement describes ionic bonds?
A a lattice of ions in a 'sea of electrons'
B electrostatic attraction between oppositely charged ions
C the sharing of electrons between atoms to gain a noble gas configuration
D the transfer of electrons from atoms of a non-metal to the atoms of a metal

12 The diagram shows the covalent bonds in an organic compound.

The total number of electrons in one molecule of this compound is \qquad . X

The total number of electrons in the bonds in one molecule of this compound is \qquad Y.. \qquad .

Which numbers correctly complete gaps X and Y ?

	X	Y
A	14	12
B	14	14
C	18	12
D	18	14

13 Which contains the greatest mass of oxygen?
A 0.2 mol of aluminium nitrate, $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
B $\quad 0.3 \mathrm{~mol}$ of potassium sulfate, $\mathrm{K}_{2} \mathrm{SO}_{4}$
C 0.4 mol of sodium nitrate, NaNO_{3}
D 0.5 mol of magnesium carbonate, MgCO_{3}

14 Compound X has a composition by mass of 63.6% nitrogen and 36.4% oxygen.
What is the empirical formula of X ?
A $\mathrm{N}_{2} \mathrm{O}$
B NO
C NO_{2}
D $\mathrm{N}_{2} \mathrm{O}_{4}$

15 The table gives the relative formula mass of four compounds and the mass of each compound present in $1 \mathrm{dm}^{3}$ of solution.

Which solution has the highest concentration in $\mathrm{mol} / \mathrm{dm}^{3}$?

	solution	relative formula mass	mass of compound in $1 \mathrm{dm}^{3}$ of solution $/ \mathrm{g}$
A	HCl	36.5	3.65
B	$\mathrm{H}_{2} \mathrm{SO}_{4}$	98	9.80
C	KOH	56	2.80
D	NaOH	40	6.00

16 Which sample contains the most atoms?
A 0.5 mol of water
B 1.0 mol of carbon dioxide
C 1.0 mol of methane
D 2.0 mol of hydrogen chloride

17 The diagrams show the structures of ethene and propene.

Which statement about equal volumes of ethene gas and propene gas at r.t.p. is correct?
A They contain equal numbers of atoms.
B They give equal volumes of carbon dioxide when burnt completely in oxygen.
C They give equal masses of ethane and propane when reacted with hydrogen.
D They react with equal masses of bromine.

18 Aqueous copper(II) sulfate is electrolysed using copper electrodes. The current is constant and the anode is weighed at regular time intervals.

Which graph is obtained when the mass of the anode is plotted against time?
A

B

C

D

19 Concentrated aqueous sodium chloride is electrolysed using inert electrodes.
Which row shows what happens in this electrolysis and why it happens?

	change occurring	explanation
A	oxygen is discharged at the anode	$\mathrm{OH}^{-}(\mathrm{aq})$ loses electrons more easily than does $\mathrm{Cl} l^{-}(\mathrm{aq})$
B	during electrolysis the pH of the electrolyte increases the electrolysis in aqueous solution involves the discharge of $\mathrm{H}^{+}(\mathrm{aq})$ ions	
D	solid sodium is discharged at the cathode	$\mathrm{Na}^{+}(\mathrm{aq})$ is present in aqueous solution the products stay the same if teplaced by molten sodium chloride

20 The energy profile diagram for both the catalysed and uncatalysed reactions between N_{2} and H_{2}, in the Haber process, is shown.

What is the activation energy for the formation of NH_{3} in the presence of a catalyst?

21 Which statement describes the conversion of magnesium atoms to magnesium ions?
A The change is reduction because there has been a gain of electrons.
B The change is oxidation because there has been a loss of electrons.
C The change is reduction because there has been a loss of electrons.
D The change is oxidation because there has been a gain of electrons.

22 When water is liquid, it ionises slightly.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The forward reaction is endothermic.
When the temperature of water is increased, which changes take place?
1 The water becomes acidic.
2 The water becomes alkaline.
3 More water molecules form ions.
A 1 and 3
B 1 only
C 2 and 3
D 3 only

23 Which row correctly describes the solubilities of both ammonium sulfate and sodium carbonate in water?

	solubility of ammonium sulfate	solubility of sodium carbonate
A	insoluble	insoluble
B	insoluble	soluble
C	soluble	insoluble
D	soluble	soluble

24 Lead(II) chloride is an insoluble salt.
Which two reagents are used to prepare a pure sample of lead(II) chloride?
A lead(II) carbonate and dilute hydrochloric acid
B lead metal and dilute hydrochloric acid
C aqueous lead(II) nitrate and dilute hydrochloric acid
D lead(II) oxide and dilute hydrochloric acid

25 The Haber process is used to make ammonia.
Which catalyst is used in the Haber process?
A iron
B nickel
C platinum
D vanadium(V) oxide

26 Some compounds containing nitrogen are used as fertilisers.
The table shows some nitrogen-containing compounds, whether they are used as a fertiliser or not and a reason for this.

Which row is correct?

	compound	used as a fertiliser	reason
A	aqueous ammonia, $\mathrm{NH}_{3}(\mathrm{aq})$	yes	lowers the pH of the soil
B	ammonium carbonate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$	no	yes insoluble in water
D	ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$	yes	Haber process and the Contact process is soluble in water

27 An atom of which element has the same electronic configuration as an atom of an of strontium?

A calcium
B krypton
C rubidium
D selenium

28 Metals are elements that have many similar properties because of their structure.
Which statement about metals is correct?
A Metals are malleable because the layers of atoms can slide over each other.
B Metals conduct electricity because their ions vibrate and pass on energy to each other.
C The melting point of metals depends on the strength of the intermolecular forces in the lattice.

D To form an alloy of two metals, the metals must have very similar ionic radii.

29 What happens when a strip of silver is immersed in aqueous copper(II) sulfate?
A Bubbles of gas will appear.
B No reaction occurs.
C Pink copper will be deposited on the silver strip.
D The silver strip will start to dissolve.

30 Four metals and hydrogen are arranged in order of decreasing reactivity.

potassium aluminium	
zinc	decreasing reactivity
hydrogen	
copper	

Which statement about these elements is correct?
A Aluminium is formed when aluminium oxide is heated with hydrogen.
B Copper displaces zinc from aqueous zinc sulfate.
C Copper is formed when copper(II) oxide is heated with hydrogen.
D When added to water, aluminium forms positive ions more readily than potassium forms positive ions.

31 Iron is extracted from haematite in a blast furnace. Coke and limestone are added to the blast furnace.

What is the function of the limestone?
A It decomposes and neutralises acidic impurities.
B It is a fuel which heats the furnace.
C It oxidises the iron in haematite.
D It releases oxygen allowing the coke to burn.

32 Carbon dioxide, methane and oxygen are gases involved in the carbon cycle.
Which of these gases may contribute to global warming?
A carbon dioxide only
B carbon dioxide and methane
C carbon dioxide and oxygen
D methane only

33 Two statements about the water in lakes are given.
statement 1 Fish are unable to live in some lakes because there is insufficient oxygen in the water.
statement 2 Fertilisers can be washed into lakes where they cause eutrophication.
What is correct?
A Both statements are correct and statement 2 explains statement 1.
B Both statements are correct but statement 2 does not explain statement 1.
C Statement 1 is correct but statement 2 is incorrect.
D Statement 2 is correct but statement 1 is incorrect.

34 Chlorine reacts with methane.
Which row is correct?

	chemical equation	conditions required
A	$\mathrm{Cl}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{H}_{2}$	methane and chlorine gases are mixed in the presence of ultraviolet light
B	$\mathrm{Cl}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{H}_{2}$	methane is bubbled into concentrated aqueous chlorine
C	$\mathrm{Cl}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$	methane and chlorine gases are mixed in the presence of ultraviolet light
D	$\mathrm{Cl}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$	methane is bubbled into concentrated aqueous chlorine

35 Which statements about alkenes are correct?
1 They have the general formula of $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}}$.
2 They undergo addition reactions with steam.
3 They burn in air to form carbon dioxide and water.
A 1 and 2 only
B 1 and 3 only
C 2 and 3 only
D 1, 2 and 3
$36 X$ is a branched hydrocarbon with the ratio of carbon atoms to hydrogen atoms being 1:2. X has a relative molecular mass of 56 .

What is the identity of X ?

A

B

C

D

37 The reactions listed all involve ethanol.

$$
\begin{array}{ll}
1 & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \\
2 & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \\
3 & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}
\end{array}
$$

Which row correctly describes each reaction?

	1	2	3
A	combustion	acidification	fermentation
B	combustion	esterification	addition
C	oxidation	acidification	addition
D	oxidation	esterification	fermentation

38 Ethanoic acid is reacted with propanol.
What is the name and what is the structure of the ester produced?
(1) name

39 The diagram shows the partial structure of a polymer.

Which type of polymer does it represent?
A polyamide
B polyester
C poly(ethene)
D polysaccharide

40 The diagram shows the repeat unit of a polymer.

Which row correctly identifies the monomer and type of polymerisation involved in making this polymer?

	monomer	type of polymerisation
A		addition
B		condensation
C		addition
D		condensation

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.
The Periodic Table of Elements

$\begin{gathered} 57 \\ \substack{\text { Lantanum } \\ \text { lanting } \\ 139} \end{gathered}$	$\begin{gathered} 58 \\ \begin{array}{c} \text { cerium } \\ \text { ce } \\ 140 \end{array} \end{gathered}$		$\begin{gathered} 60 \\ \mathrm{Nd} \\ \text { neodymium } \\ \text { neo } \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ \begin{array}{c} 61 \\ \text { Promenthium } \end{array} \end{gathered}$	$\begin{gathered} 62 \\ \substack{\text { samatium } \\ \text { s. } \\ 150} \\ \hline 150 \end{gathered}$	$\begin{gathered} 63 \\ \begin{array}{c} \text { Eu } \\ \substack{\text { europium } \\ 152} \end{array} \end{gathered}$	$\underset{\substack{\text { gaddifium } \\ \text { gac } \\ 157}}{\text { Gd }}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ \begin{array}{c} \text { terbium } \\ 159 \\ \hline \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ \text { dyspossium } \\ 163 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ \text { homium } \\ 165 \end{gathered}$		$\begin{gathered} 69 \\ \begin{array}{c} \text { thulium } \\ \text { tulum } \\ 1696 \end{array} \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ \substack{\text { yterbium } \\ \text { tir }} \end{gathered}$	$\underset{\substack{\text { Luteium } \\ 175 \\ \text { Lu }}}{71}$
89	90	91	92	${ }^{93}$	94	95	96	97	${ }^{98}$	99	100	101	102	103
Ac	$\underset{\text { thtorium }}{\text { th }}$	$\underset{\text { protactinium }}{\mathrm{Pa}}$	$\underset{\text { uranum }}{\text { un }}$	$\underset{\substack{\mathrm{Ne} p \\ \text { noturum }}}{ }$	$\underset{\text { puluorium }}{\mathrm{Pu}}$	$\underset{\text { americium }}{\mathrm{Am}}$	$\underset{\text { curium }}{\mathrm{Cm}}$	$\underset{\text { benelium }}{\mathrm{BK}}$	$\underset{\text { callonium }}{\text { Cf }}$	Es	$\underset{\text { fembum }}{\text { Fm }}$	$\begin{gathered} \text { mendelevium } \end{gathered}$	$\underset{\substack{\text { nobelium }}}{\text { Noo }}$	$\underset{\text { hawencium }}{\mathrm{Lr}}$

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

